For CONTENTS of present Part : See further below.

This whole Website consists of five Main Parts :


Continuation of the Special Series :
e-mail :  ( Please write in  ' Subject '  entry :  ' METAPHYSICS ',  in order for me to be able to distinguish your mail from spam )
Philosophy of Being
(HOMEPAGE)
Retrospect and continuation

Symmetry of three-dimensional Crystals :
Group Theory
The Total Symmetry of Three-dimensional Crystals
Part I.   Matrices

The Total Symmetry of 3-D Crystals
Part II.
Group Theory

( C12   D2
Automorphism )

The Total Symmetry of 3-D Crystals
Part III.
Group Theory

( C6   D3  D6   (inner)Automorphism )
The Total Symmetry of 3-D Crystals
Part IV.
Group Theory

( C6 C3 C4 C2 C1 C7
 Automorphism )

The Total Symmetry of 3-D Crystals
Part V.
Group Theory

( C12  Cosets
 Homomorphism )

The Total Symmetry of 3-D Crystals
Part VI.
Group Theory

(Sequel  C12  Cosets
 Homomorphism )

The Total Symmetry of 3-D Crystals
Part VII.
Group Theory

( Cinfinite   D3
Homomorphism
D6  C2  D2 )

The Total Symmetry of 3-D Crystals
Part VIII.
Group Theory

( D6 
Homomorphy theory
D4  D5  Dinfinite )

The Total Symmetry of 3-D Crystals
Part IX.
Group Theory

( C4xC3   C6xC2
C2xC2=D2   D3xC2 )

The Total Symmetry of 3-D Crystals
Part X.
Group Theory

( C4xC2=C4i
C2xC2xC2=D2xC2
Automorphisms )

The Total Symmetry of 3-D Crystals
Part XI.
Group Theory
( CinfinitexCinfinite
CinfinitexC2
Dinfinite    Cinfinite
Even/odd permutations )

The Total Symmetry of 3-D Crystals
Part XII.
Group Theory

( Relevance of group theory
Classification of simple groups
Symmetry groups
Indirect product
D4=C2semiC4 )

The Total Symmetry of 3-D Crystals
Part XIII.
Group Theory

( Sequel to symmetry groups :  A4    S4=O
S4xC2=Oi     A5
A5xC2 )

The Total Symmetry of 3-D Crystals
Part XIV.
Group Theory

( Cosets.     D6   Q6 )
The Total Symmetry of 3-D Crystals
Part XV.
Group Theory

( Conjugation
Normal subgroups
D4   A4    Center
Centralizer )

The Total Symmetry of 3-D Crystals
Part XVI.
Group Theory

( Homomorphism
Quotient groups
Normal subgroups
D3   D4   A4
Cinfinite   C5   C4 )

The Total Symmetry of 3-D Crystals
Part XVII.
Group Theory

( Automorphism
 D4  )

The Total Symmetry of 3-D Crystals
Part XVIII.
Group Theory

( Automorphism 
D3   C12   C6 x C2
Q4 )

The Total Symmetry of 3-D Crystals
Part XIX.
Group Theory

( Automorphism 
Q4   Q6   S4 )

The Total Symmetry of 3-D Crystals
Part XX.
Group Theory

( Periodic 2D-patterns
P4mm )

The Total Symmetry of 3-D Crystals
Part XXI.
Group Theory

( Periodic 2D-patterns
P1   P2   P3   P4 )

The Total Symmetry of 3-D Crystals
Part XXII.
Group Theory

( Periodic 2D-patterns
P6   Pm   Pg   P2mm
P2gg   P2mg )

The Total Symmetry of 3-D Crystals
Part XXIII.
Group Theory

( Periodic 2D-patterns
Cm   C2mm
P4gm   P6mm )

The Total Symmetry of 3-D Crystals
Part XXIV.
Group Theory

( Periodic 2D-patterns
P31m   P3m1 )

SEQUEL TO GROUP THEORY
Two-dimensional patterns

Actual Structure and Growth of three-dimensional Crystals
The Chemical Lattice Types of Three-dimensional Crystals
The Shapes of Three-dimensional Crystals
The Thermodynamics of Crystal Growth
Twin Crystals

Tectology
Series

Introduction to Tectology
Tectology : Morphological Individuality. Cells, Organs, Antimers
Tectology : Morphological Individuality. Metamers
Tectology : Morphological Individuality. Persons and Colonies
Tectology : Physiological Individuality. Cells, Organs, Antimers
Tectology : Physiological Individuality. Metamers, Persons, Colonies

 
Basic Forms

 
Promorphological
System

Introduction to Promorphology
Anaxonia Homaxonia Polyaxonia
Protaxonia : Monaxonia
Stauraxonia homopola
Homopola sigmostaura
Stauraxonia heteropola :
Homostaura isopola

Homostaura anisopola,
Heterostaura

Autopola oxystaura
Autopola orthostaura

Allopola
Allopola amphipleura
Allopola zygopleura

Heteropola gyrostaura
Protaxonia spiraxonia
Spiraxonia allogonia
Spiraxonia isogonia, Concluding remarks on Promorphology

Basic Forms of the
Six Individuality Orders

Basic Forms of
C e l l s   I

Basic Forms of
C e l l s   II

Basic Forms of
O r g a n s

Basic Forms of
A n t i m e r s

Basic Forms of
M e t a m e r s

Basic Forms of
P e r s o n s

Basic Forms of
C o l o n i e s

e-mail :  lovelace@hetnet.nl
Basic Forms
of   C r y s t a l s


Promorphology of Crystals
Preparation I.
P4gm

Promorphology of Crystals
Preparation II.
P4gm

Promorphology of Crystals
Preparation III.
P1,  P2,  Pm

Promorphology of Crystals
Preparation IV.
Pg

Promorphology of Crystals
Preparation V.
Cm,  P2gg,  P2mm,  P2mg,  C2mm

Promorphology of Crystals
Preparation VI.
P4gm

Promorphology of Crystals
Preparation VII.
P4mm,  P4,  P3

Promorphology of Crystals
Preparation VIII.
P3m1

Promorphology of Crystals
Preparation IX.
P3m1

Promorphology of Crystals
Preparation X.
P3m1

Promorphology of Crystals
Preparation XI.
P31m

Promorphology of Crystals
Preparation XII.
P31m

Promorphology of Crystals
Preparation XIII.
P31m

Promorphology of Crystals
Preparation XIV.
P31m

Promorphology of Crystals
Preparation XV.
P31m,  P3m1

Promorphology of Crystals
Preparation XVI.
P6,  P6mm

Promorphology of Crystals
Preparation XVII.
P6mm

Elimination of glide translations I
Elimination of glide translations II
Preparation to a Promorphology of
3-D Crystals. Part I

Preparation to a Promorphology of
3-D Crystals. Part II

Preparation to a Promorphology of
3-D Crystals. Part III

Preparation to a Promorphology of
3-D Crystals. Part IV

Preparation to a Promorphology of
3-D Crystals. Part V

Promorphology of Crystals I
Promorphology of Crystals II
Promorphology of Crystals III

Theses on
Basic Forms

Promorphological Theses and Tables


Third Part of Website
a  HOLISTIC Philosophy as an alternative world view
e-mail :